A note on the gravitational field of a rotating radiating source

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1972 J. Phys. A: Gen. Phys. 5 L131
(http://iopscience.iop.org/0022-3689/5/12/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.72
The article was downloaded on 02/06/2010 at 04:28

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A note on the gravitational field of a rotating radiating source

P A GOODINSON
Department of Mathematics, Queen Elizabeth College, Campden Hill Road, London W8, UK
MS received 10 October 1972

Abstract. We present here a generalization of an already known solution.
Kramer (1972) has recently given an exact axially-symmetric nonstationary solution of Einstein's field equations with the energy momentum tensor of a radiation field. In this note we give a generalization of the Kramer solution.

The general metric admitting a null shear free vector field K^{α} is given by (Robinson and Robinson 1969)

$$
\begin{aligned}
& \mathrm{d} s^{2}=2 P^{2} \mathrm{~d} \zeta \mathrm{~d} \bar{\zeta}+2(\mathrm{~d} \rho+Z \mathrm{~d} \zeta+Z \mathrm{~d} \bar{\zeta}) \mathrm{d} \Sigma+2 S(\mathrm{~d} \Sigma)^{2} \\
& \mathrm{~d} \Sigma=a(b \mathrm{~d} \zeta+\bar{b} \mathrm{~d} \bar{\zeta}+\mathrm{d} \sigma)=K_{\alpha} \mathrm{d} x^{\alpha}
\end{aligned}
$$

with P, Z, \bar{Z}, S functions of all four coordinates $(\zeta, \bar{\zeta}, \sigma, \rho)$ and a, b, \bar{b} independent of ρ. Writing $\zeta=(x+i y) / \sqrt{ } 2$ the Ricci tensor will be of the form
if

$$
\begin{aligned}
& R_{\alpha \beta}=-q K_{\alpha} K_{\beta} \\
& a=1 \\
& b=\mathrm{i} \alpha(1+c g)^{1 / 2} /\left(\dot{g} \cosh ^{2} x\right), \quad \quad P^{2}=\left(\rho^{2}+\Omega^{2}\right) /(\dot{g} \cosh x)^{2} \\
& Z=\sqrt{ }(2) \alpha^{2} c \dot{g} \operatorname{sech}^{2} x \tanh x+\mathrm{i} \alpha \operatorname{sech}^{2} x\left\{\dot{g}(1+c g)^{1 / 2}-\rho\left(\frac{(1+c g)^{1 / 2}}{\dot{g}}\right)\right\} \\
& S=-\rho \frac{\ddot{g}}{\dot{g}}-\frac{1}{2} \dot{g}^{2}+\frac{\alpha^{2} c^{2} \dot{g}^{2}}{4(1+c g) \cosh ^{2} x}+\frac{\rho m_{0} \dot{g}^{3}}{\alpha^{2}(1+c g)^{3 / 2}\left(\rho^{2}+\Omega^{2}\right)}
\end{aligned}
$$

where α, m_{0} are constants, g is a function of σ only, \dot{g} denotes $\mathrm{d} g / \mathrm{d} \sigma$ with $\Omega=-\sqrt{ }(2) \alpha \dot{g}(1+c g)^{1 / 2} \tanh x$. The above expressions satisfy the Robinson main and subsidiary conditions.

The Kramer solution is obtained by putting $g=\sigma, c \neq 0$. The Kerr stationary vacuum metric (cf Murenbeeld and Trollope 1970) is obtained by putting $g=\sigma, c=0$ and making the transformations

$$
\rho=r, \quad \operatorname{sech} x=\sin \theta, \quad y=-\phi, \quad \sigma=u
$$

with $2 \alpha^{2}=a^{2}$ and $2 m_{0}=m a^{2}$.

References

